Current Applications and Safety of Autologous Fat Grafts: A Report of the ASPS Fat Graft Task Force

Karol A. Gutowski, M.D.
ASPS Fat Graft Task Force

Task Force Statement: In 2007, the American Society of Plastic Surgeons formed a task force to conduct an assessment regarding the safety and efficacy of autologous fat grafting, specifically to the breast, and to make recommendations for future research. The task force formulated specific issues regarding fat grafting and then compiled them to focus on five broad-based questions: 1. What are the current and potential applications of fat grafting (specifically breast indications, and if data are available, other cosmetic and reconstructive applications)? 2. What risks and complications are associated with fat grafting? 3. How does technique affect outcomes, including safety and efficacy, of fat grafting? 4. What risk factors need to be considered for patient selection at this level of invasiveness? 5. What advancements in bench research/molecular biology potentially impact current or future methods of fat grafting?

To answer these questions, the task force reviewed the scientific literature, critically appraised the information available, and developed evidence-based practice recommendations. Although the primary issue of interest was fat grafting to the breast, other aspects of fat grafting were evaluated. (Plast. Reconstr. Surg. 124: 272, 2009.)

DISCLAIMER

A renewed clinical interest in fat grafting for both reconstructive and aesthetic purposes has prompted plastic surgeons and other medical practitioners to perform such procedures. While it appears that these procedures are being performed more frequently and for broader indications, there is a relative lack of information for physicians to guide them in choosing optimal techniques, appropriate patient selection, and offering realistic advice on outcomes and potential complications to their patients. By conducting an evidence-based review, we will offer a graded summary of the evidence to help optimize the clinical use of fat grafts.

Disclosures: Dr. Gutowski, who was chairman of the task force, serves as a paid advisor to AestheTec, a company that is developing fat grafting technology; however, he did not hold this position during the activities of the task force. Dr. Coleman receives a royalty for instruments sold by Byron Medical, Beacon, and Mentor; is a medical advisor and has stock or the potential for stock options with Cytori Therapeutics, Zeltiq (unpaid), and Beacon Medical (unpaid); and is an unpaid consultant for the Armed Forces Institute of Regenerative Medicine. Dr. Rubin receives research support from Pfizer, Covidien, and Toucan Capital. The other authors have no financial interests related to fat grafting. No other members of the task force have financial interests related to fat grafting.

Supplemental digital content is available for this article. A direct URL citation appears in the printed text; simply type the URL address into any web browser to access this content. A clickable link to the material is provided in the HTML text of this article on the Journal’s Web site (www.PRSJournal.com).
METHODS

Literature Search and Admission of Evidence

This review involved a prospective, systematic method for identifying and evaluating current literature on autologous fat grafting. A comprehensive search of PubMed and the Cochrane Database of Systematic Reviews was performed by using the following search terms: autologous fat grafting, autogenous fat grafting, autologous fat transfer, autogenous fat filler, autogenous fat filler, fat harvest, adipocyte harvest, lipoaspirate, lipotransfer, lipoinjection, lipoinfiltration, fat augmentation, adipose augmentation, adipocyte augmentation, and adipocyte graft.

Search limits restricted results to English-language articles that were indexed as human studies, clinical trials, randomized controlled trials, systematic reviews, case series, or case reports. As a task force member was fluent in French, French-language manuscripts were included if they were relevant to the breast, which was the main focus of the task force. The original search resulted in 187 articles. Excluded from the literature selection were most articles addressing fat grafting with other types of grafts (i.e., dermal fat grafts) and fat grafting for non–plastic surgery applications. Articles of this nature were included only if deemed critical to the review (i.e., for review of complications). Also excluded were articles for which we were unable to access full text. Based on these final criteria, 110 articles were included in this review.

Critical Appraisal of the Literature

Relevant articles were categorized by study type: randomized controlled trial, systematic review, cohort study, case-control study, case series, or case report. Each article was critically appraised for study quality and assigned a corresponding level of evidence according to American Society of Plastic Surgeons Evidence Rating Scales (Table 1).

Development of Clinical Practice Recommendations

Practice recommendations were developed through critical appraisal of the literature and consensus of the American Society of Plastic Surgeons Fat Graft Task Force. Recommendations are based on the strength of supporting evidence and graded according to the society’s Grades of Recommendation Scale (Table 2). Grade A and B recommendations were made if there were high-quality studies supporting a specific use or technique associated with fat grafting, while grade C or D recommendations were made if the level of evidence was low or inconsistent. Recommendations developed by the task force were provided throughout the document and also in Table 3.

Table 1. Evidence Rating Scale for Studies Reviewed

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Qualifying Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>High-quality, multicentered, randomized controlled trial with adequate power; or systematic review of these studies</td>
</tr>
<tr>
<td>II</td>
<td>Lesser-quality, randomized controlled trial; prospective cohort study; or systematic review of these studies</td>
</tr>
<tr>
<td>III</td>
<td>Retrospective comparative study; case-control study; or systematic review of these studies</td>
</tr>
<tr>
<td>IV</td>
<td>Case series</td>
</tr>
<tr>
<td>V</td>
<td>Expert opinion; case report or clinical example; or evidence based on physiology, bench research or “first principles”</td>
</tr>
</tbody>
</table>
RESULTS

1. What are the current and potential applications of autologous fat grafting (specifically breast indications, and if data are available, other cosmetic and reconstructive applications)?

 The evidence regarding fat grafting applications consists mostly of case series and case reports and a few small, lesser-quality experimental studies. Preliminary results are encouraging and warrant further study in the area of fat grafting for various applications.

 Breast Indications

 While there is at least one registered prospective clinical trial (BRAVA, clinicaltrials.gov ID: NCT00466765) and other nonregistered prospective trials involving fat grafting to the breast, no randomized controlled trials were identified during the literature search. The available literature consists mostly of case series, case reports, and expert opinion and describes fat grafting for various breast indications, both cosmetic and reconstructive.1-10 (evidence level: IV, V).

 Several small case series and a case report describe fat grafting to the breast for augmentation and/or correction of defects due to medical conditions or previous breast surgeries. Combined, 283 patients had fat grafting procedures; approximate age range was 21 to 73 years.

 In these reports, indications for fat grafting included:

 - Micromastia
 - Postaugmentation deformity, with and without removal of implant
 - Tuberous breasts

<table>
<thead>
<tr>
<th>Table 2. Scale for Grading Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Task Force Recommendations Regarding Fat Grafts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation</td>
</tr>
<tr>
<td>Fat grafting may be considered for breast augmentation and correction of defects associated with medical conditions and previous breast surgeries; however, results are dependent on technique and surgeon expertise. Because longevity of the graft is unknown, additional treatments may be necessary to obtain the desired effect. Additionally, fluctuations in body weight can affect graft volume over time.</td>
</tr>
<tr>
<td>Fat grafting can be considered a safe method of augmentation and correction of defects associated with various medical conditions. With infection being a primary concern, the need for sterile technique should be emphasized. Patients should be made aware of the potential complications and should provide written informed consent acknowledging their understanding of these risks.</td>
</tr>
<tr>
<td>When determining whether or not a patient is an appropriate candidate for autologous fat grafting to the breast, physicians should exercise caution when considering high-risk patients (i.e., those with risk factors for breast cancer: BRCA-1, BRCA-2, and/or personal or familial history of breast cancer). Baseline mammography (within American College of Surgeons or American Cancer Society guidelines) is recommended.</td>
</tr>
</tbody>
</table>
Fat grafting may be considered for breast augmentation and correction of defects associated with medical conditions and previous breast surgeries; however, results are dependent on technique and surgeon expertise. Because longevity of the graft is unknown, additional treatments may be necessary to obtain the desired effect. In addition, fluctuations in body weight can affect graft volume over time (recommendation grade: B).

Other Indications

Fat grafting has also been used for the following applications; however, the task force is unable to make recommendations regarding these applications without further research and analysis:

- Gluteal augmentation and repair of contour deformities17–21 (evidence level: IV, V)
- Facial augmentation and correction of defects10,22–46 (evidence level: III, IV, V)
- Hand rejuvenation47–49 (evidence level: II, IV)
- Lip augmentation50–54 (evidence level: II, IV)
- Penile enlargement and aesthetic improvement55,56 (evidence level: IV, V)

2. What risks and complications are associated with fat grafting?

The evidence for associated risks and complications consists mainly of case series and case reports documenting complications associated with fat grafting for various plastic surgery applications.

Potential complications/risks are described below.

Anesthesia-related complications: No cases of anesthetic complications were reported. These complications are uncommon, and considering this procedure is typically done under local anesthesia, with or without sedation, the risk is considered low.

Infection9,14,20,36,54: Cases of prolonged inflammation, septic shock, and Staph infections have been documented with these procedures. Most cases resolved with antibiotic therapy (evidence level: IV, V).

Bleeding9,21,37,46: Cases of seroma or hematoma have been documented with these procedures. No cases, however, of unusual or severe bleeding have been presented (evidence level: IV).

Less than expected beneficial outcome2,11,12,23,37–50: Results from these procedures are typically reported as excellent or good; however, no standardized rating scales are available to evaluate outcome. Overall, graft volume loss, via reabsorption or necrosis, is the primary cause of poor results. Initial overcorrection, performed by an experience surgeon, can often compensate for this outcome. Instances of graft hypertrophy or over-
growth have been documented; however, they appear to be rare. Other complications affecting aesthetic results include the formation of calcified and noncalcified masses (evidence level: IV, V).

Interference with breast cancer detection. Fat grafting to the breast could potentially interfere with breast cancer detection; however, no evidence was found that strongly suggests this interference. Two cases of breast cancer were reported after fat grafting to the breast, but there was no delay in detection or treatment. Radiological studies suggest that imaging technologies (ultrasound, mammography, and magnetic resonance imaging) can identify the grafted fat tissue, microcalcifications, and suspicious lesions; biopsies may be performed if needed for additional clarification. Based on a limited number of studies with few cases, there appears to be no interference with breast cancer detection; however, more studies are needed to confirm these preliminary findings (evidence level: IV, V).

Other risks. Considering the level of invasiveness during this procedure, the occurrence of unexpected, life-threatening complications should be measured. The available literature documents a low case number of fat embolism (including one pulmonary fat embolism resulting in the death of the patient), strokes, a single case of lipoid meningitis, as well as serious cases of infection including septic shock (evidence level: I, IV, V).

Overall, complication rates associated with fat grafting are not unduly high, considering the level of invasiveness of the procedure. Cases of severe complications and death appear to be extremely rare, and causation in these cases could not be fully determined. Therefore, the task force found no compelling evidence that would warrant a strong recommendation against autologous fat grafting. The risks associated with fat grafting procedures may actually be lower than for other types of surgery; however, no high-level studies comparing fat grafting to other procedures are available, and as such, surgeons should exercise appropriate caution. Fat grafting can be considered a safe method of augmentation and correction of defects associated with various medical conditions. With infection being a primary concern, the need for sterile technique should be emphasized. Patients should be made aware of the potential complications and should provide written informed consent acknowledging their understanding of these risks. See Figure, Supplement Digital Content 1, for a sample consent form, http://links.lww.com/A1379 (recommendation grade: B).

3. How does technique affect outcomes (safety and efficacy)?

The evidence consists mainly of case series, case reports, and animal studies describing specific techniques for several aspects of fat grafting. Evidence summaries for each aspect of fat grafting technique are presented below; however, the task force is unable to make recommendations without further research and analysis.

Harvest technique. The primary concerns to be addressed during tissue harvest are level of invasiveness (patient safety) and tissue viability (efficacy). With this in mind, exposure to air and mechanical damage should be minimized at this step. It is suggested that tissue harvest be performed using a 3- to 4-mm blunt cannula or similar needle, while utilizing minimal amounts of suction required for tissue extraction (evidence level: IV, V).

Harvest site. The primary concerns to be addressed during choice of harvest site are adequate tissue volume, which is patient specific, and patient/physician preference. There is no compelling evidence regarding harvest site and efficacy of fat grafting (evidence level: V).

Graft preparation. To avoid contamination and maximize tissue viability, exposure to air and mechanical damage should be minimized. Many studies suggest that viable adipocytes should be separated from blood, serum, and damaged adipocytes via centrifugation (3000 rpm for 3 minutes) while still within the harvest syringe. Note, however, that centrifugation is typically described in revolutions per minute, not in terms of relative centrifugal force expressed in units of gravity. Because many microcentrifuges have settings only for speed, a formula for conversion is required to ensure that the appropriate setting is used. The relationship between revolutions per minute and relative centrifugal force is as follows: $g = (1.118 \times 10^{-5}) R S^2$, where R = radius of rotor (center of rotor to sample), in centimeters, and S = speed, rpm (evidence level: IV, V).

Injection technique. To optimize fat graft viability, mechanical damage of the tissue to be injected should be minimized. Graft injection should be performed using a 2- to 2.5-mm blunt-tipped infusion cannula or a similar blunt needle, and with injection occurring in multiple passes in the area of augmentation, resulting in small fat deposits with each pass (evidence level: IV, V).

Injection site. The primary concern to be addressed during choice of injection site in-
volves the desired outcome of the procedure, which is patient specific. The evidence does not indicate whether or not injection site significantly effects graft viability (evidence level: IV, V).

Graft storage\(^{21,84-90}\). Overall, tissue viability tends to drop significantly upon storage, which in turn may decrease fat graft efficacy. It is suggested that fat tissue be used fresh (evidence level: IV, V).

Use of epinephrine and lidocaine at the donor site\(^{91}\): The use of either epinephrine or lidocaine has not been shown to affect graft viability, though thorough investigations have not been performed. It is suggested that use of anesthetics at the injection site be minimally applied (evidence level: V).

4. **What risk factors need to be considered for patient selection at this level of invasiveness?**

No evidence was found that specifically addressed patient selection. Therefore, the recommendation was developed by consensus of the task force and is considered expert opinion. When determining whether or not a patient is an appropriate candidate for autologous fat grafting to the breast, physicians should exercise caution when considering high-risk patients (i.e., those with risk factors for breast cancer: BRCA-1, BRCA-2, and/or personal or familial history of breast cancer). Baseline mammography (within American College of Surgeons or American Cancer Society guidelines) is recommended (recommendation grade: D).

5. **What advancements in bench research/molecular biology potentially impact current or future methods of autologous fat grafting?**

The current evidence consists primarily of in vitro and animal studies describing cell/tissue manipulation to improve viability.\(^{41,80,84-86,89,92-111}\) These studies include variations in co-injection additives, pretreatment of graft site, and/or adipose tissue studies addressing compensatory increase fat response, oxygen requirements for graft viability, cell-culture techniques, graft storage and cryopreservation, and assays for graft survival. No randomized controlled trials were identified during the literature search. The nature of this question and lack of human data limit our ability to make recommendations; however, many of the studies indicate potential efficacy, justifying further research in these areas (evidence level: V).

CONCLUSIONS

Clinical Applications

Based on a review of the current literature and a lack of strong data, the task force cannot make specific recommendations for the clinical use of fat grafts. Although fat grafts may be considered for use in the breast and other sites, the specific techniques of graft harvesting, preparation, and injection are not standardized. The results, therefore, may vary depending on the surgeon’s technique and experience with the procedure. Although there are few data to provide evidence for long-term safety and efficacy of fat grafting, the reported complications suggest that there are associated risks. Regarding fat grafting to the breast, there are no reports suggesting an increased risk of malignancy associated with fat grafting. There is a potential risk of fat grafts interfering with breast physical examination or breast cancer detection; however, the limited data available suggest that fat grafts may not interfere with radiologic imaging in detecting breast cancer.

Future Research

The task force believes autologous fat grafting is a promising and clinically relevant research topic. The current fat grafting literature is limited primarily to case studies, leaving a tremendous need for high-quality clinical studies. While this evidence-based review resulted in few, if any, new data that would prompt a substantial change in the current state of fat grafting, the lack of new information poses two important questions: (1) are current methods of fat grafting still the accepted standard, or (2) is more research needed and should funding be directed toward new studies? For many aspects of fat grafting, the task force found the latter to be true and has suggested the following areas for future research:

- Randomized controlled trials to assess safety and efficacy of fat grafting for different indications
- Randomized controlled trials to assess safety and efficacy of specific fat grafting techniques
- Studies to further assess the effect of fat grafting on breast cancer detection and treatment
- Studies to identify risk factors and improve patient selection for procedures involving fat grafting
- Studies to investigate aspects of cell/tissue viability and graft survival, as well as long-term storage and banking of fat grafts.
APPENDIX

The task force was composed of American Society of Plastic Surgeons members with expertise in fat grafts and research methodology and included the following:

Karol A. Gutowski, M.D., Chair, Department of Surgery, University of Chicago, NorthShore University HealthSystem, Evanston, Ill.

Stephen B. Baker, M.D., D.D.S., Plastic Surgery Program, Georgetown University Hospital, Washington, D.C.

Sydney R. Coleman, M.D., Department of Surgery, New York University Medical Center, and Center for Aesthetics Rejuvenation and Enhancement, TriBeCa Plastic Surgery, New York, N.Y.

Karol A. Gutowski, M.D., Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, La.

H. Peter Lorenz, M.D., Department of Surgery, Stanford University Medical Center, and Plastic Surgery, Lucile Packard Children’s Hospital, Palo Alto, Calif.

Marga F. Massey, M.D., Center for Microsurgical Breast Reconstruction, Charleston, S.C.

Andrea Pusic, M.D., Department of Surgery, Cornell University, Ithaca, N.Y.

J. Peter Rubin, M.D., Department of Surgery, University of Pittsburgh, Pittsburgh, Pa.

ACKNOWLEDGMENTS

The task force thanks Morgan Tucker, Ph.D., and Jennifer Swanson, B.S., M.Ed., for their assistance with literature searches, data extraction, critical appraisal, and manuscript preparation; and DeLaine Schmitz, literature searches, data extraction, critical appraisal, and manuscript preparation; and DeLaine Schmitz, for her assistance with manuscript and manuscript preparation; and DeLaine Schmitz, for their assistance with

REFERENCES

Autologous Fat Grafts

80. Lacy EL, Bartness TJ. Effects of white adipose tissue grafts on total body fat and cellularity are dependent on graft type and location. Am J Physiol Regul Integr Comp Physiol. 2005; 289:R880–R888.